
Hamiltonian of a ID quantum chain for Belavin's zn × zn model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 L579

(http://iopscience.iop.org/0305-4470/22/13/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) L579-L586. Printed in the UK 

LETTER TO THE EDITOR 

Hamiltonian of a ID quantum chain for Belavin’s Z, x Z, 
model 

Wei HuatS, Zhou Yu-kuiiS and Hou Bo-yuS 
t Center of Theoretical Physics, CCAST(World Laboratory), Beijing, People’s Republic 
of China 

Institute of Modem Physics, Xibei University, Xi’an, 710069, People’s Republic of China 

Received 27 October 1988 

Abstract. The Hamiltonian of a I D  quantum chain corresponding to Belavin’s Z, x Z, 
symmetric model is derived. This Hamiltonian is a multicomponent generalisation of the 
X Y Z  model with n 2  coupling constants in general. In the limit 7 + i a  it reduces to the 
generalised X X Z  model with ( n  - 1) n-fold-degenerate coupling constants and n non- 
degenerate ones. The Hamiltonian is Hermitian only for n = 2 or for n > 2 with a crossing 
parameter w restricted to integers. There exists a domain of parameters in which the 
Boltzmann weights are positive but the corresponding Hamiltonian is non-Hermitian. The 
relations of the Hamiltonian to other models are discussed. 

1. Introduction 

An important discovery of exactly solvable models is the connection between 2~ 
statistical models and the Heisenberg I D  quantum chains [l-71. In 1970 Sutherland 
showed that the transfer matrix of a zero-field eight-vertex model commutes with the 
Hamiltonian of the X Y Z  model [3]. In 1972 Baxter showed that the general anisotropic 
X Y Z  spin-chain Hamiltonian could be obtained as a logarithmic derivative of the 
transfer matrix of the eight-vertex model, and calculated the ground-state energy for 
the X Y Z  model [4]. Subsequently, by constructing the eigenvectors and finding the 
eigenvalues of the transfer matrix, he solved completely the X Y Z  model [5]. On the 
basis of Baxter’s results on the transfer matrix, Johnson et a1 calculated the excitation 
energy of the X Y Z  model [ 6 ] .  In 1979 Faddeev proposed the quantum method of 
inverse problem and applied it to the X Y Z  model such that the Bethe’s ansatz method 
[8,9] has been simplified and algebraicised. The results of the transfer matrix were 
also used to investigate the excitation spectrum of the E ,  x E ,  model originating from 
the Toda chain [7]. 

Recently Belavin’s E, x Z, symmetric model [ 10-121 was exactly solved [ 13,141. 
This solution stimulated the investigation of the corresponding ID quantum chains. 
In this paper we deduce the Hamiltonian of this model and discuss its characterestics 
and the relations to other models [7, 15-18]. 

2. Derivation of the Hamiltonian 

The Boltzmann weights Sff.‘(z) of Belavin’s E ,  x h, model can be written as [ 10-121 
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with 

1 a1 -+- 
2 n  
1 a2 -+- 
2 n  

where p ( z )  is an overall factor which does not change the Yang-Baxter relations 
[16, 191, a = (a1, a2)  E G,, G, = H, x Z,, I ,  = halga*, h and g are n x n matrices with 
the matrix elements 

h .  J k  =ak+' ](mod,) gjk = a j k  w = exp(2ri /n)  (3) k 

and 6 [ g ] ( z ,  T )  is the Jacobi theta function of rational characteristics a, 6: 
cc. 

6 [ by] ( z, T )  = =c_, exp[ Ti( m + U ) ~ T  + 2 r i (  m + a )  ( z  + 6 ) ]  

= exp[ .rria27 + 27ria ( z  + 6 ) ]  6( z + a7 + 6 , ~ ) .  (4) 

The Boltzmann weights have been evaluated in [ 121. From (1) and (2) it is derived 
that 

1 I - k  -+- 
kl 

stj ( z )  = - n p ( Z ) a i + j , k + /  

where 6 i ( O ,  T )  = (d/dz)tY,(z,  T ) [ , , ~ .  The transfer matrix is 

T!l-lN(z) = . .  s ; ) , ( z ) s ~ ~ 2 ( z )  . . . s;$,j;-,(z)s:tjj"N(z) ( 6 )  
11 ... IN 

JI-JN 

satisfying [13, 141 

[ T(  z ) ,  T (  z ' ) ]  = 0. (7) 

It gives many integrals of motion, each of which can be regarded as a Hamiltonian 
for a quantum system [ 11.  The simplest one is the Hamiltonian of a multicomponent 
I D  quantum chain: 

( 8 )  

( l u ) i k ( z ~ ) j l  = nailajk ( 9 )  

a 
H = -p (O)  -1n T(z)I,=,+ h,.  

aZ 

In the following we evaluate the expression of this Hamiltonian. Using 

a t G ,  

we have, for an N-site I D  chain with periodicity that the ( N + l ) t h  site identifies the 
first site 

(10) 
l N  d 

n m = l  

H = -- c 8!l a!m-I J m - I  -s!m+l!m d z  J m  J ~ + I ( ~ ) I L = O ~ ~ : :  * * .  S j ; " + h O .  J I " '  
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As contrasted to the w, in (l),  we define Boltzmann coordinates Pa by 

1 pa(z)(Ia)i/(IL)jk = wa(z)(Ia)ik(z~)j/. 
U P G .  a s G n  

By means of 

Tr I& = ns,, 

we can get 

with 

This sum can be performed as follows. From 

F ( w + l )  =exp(-2 iml /n)F(w)  

F ( w + r )  =exp[-2irr(z-a2)/n]F(w) 

we know that F(w) has only one zero and one pole in the lattice A I T  generated by 1 
and T. The pole locates at 0 (mod( m + " 7 ) )  and the zero locates at 

= (a17 + a 2  - z ) / n  mod( m + "7). 

Hence we have 

F ( w )  = Cala,(z, w)* [ ~ - ~ ] c W + ~ ,  -_-  T ) ( - 8 1 ( W ,  . ) ) - I .  (18) 

2 n  

CalU2(z, w),  being a doubly periodic function of w without pole, is independent of w 
and can be determined to be 
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Now the Hamiltonian can be expressed in the ID chain form with site number summed 
from 1 to N :  

where 

1 

or 

Clearly the Hamiltonian involves n2 coupling constants, one of which can become 
zero if choosing ho= NJ,/n. The Hamiltonian (20) may be regarded as a multicom- 
ponent generalisation of the X Y Z  model. For n = 2, taking 

p(z)=2.rr- '6;*(0,7)81(w, 27)/84(z+w,27) ho = NJ,/ 2 (24) 

we obtain 

with 

J ,  = Jlo = 1 + k sn2( 3, k )  J2 = J1 , = 1 - k sn2( 3, k )  J3 = Jol = cn( 3, k )  dn( 3, k )  (26) 

where the modulus of elliptic functions k = &(O, 27)/8:(0,27), 3 = 2Kw, K = 
f?r8:(0,27). This is the Hamiltonian of the X Y Z  model and identifies the result of [ 1,4]. 

Using the basis of matrices E,  with ( E , j ) k ,  = SiktjjI, the Hamiltonian (20) becomes 

with 
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3. The limit T + ~ O O  case 

We know that the six-vertex model is the special case of the eight-vertex model with 
the seventh and the eighth vertices vanishing [16]. We shall see below that this can 
be arrived at by taking the limit 7 + io0 in Belavin’s parametrisation. First we consider 
the limit in the arbitrary n case. From (4), (22) and (23) we get 

Joo( w, icc) = np’ (0 )  + rp(O)/sin r w  (29) 

JOa2(w, icc) = [rp(O)/sin rw](cos r w  -co t ( ra , /n )  sin r w )  (30) 

J,,,,( w, ico) = [rp(O)/sin r w ]  exp(irwA,,) f f , # O  (31 )  

A k  = sgn( k )  - 2k/n k f O .  (32) 

f f , # O  

where 

We can see that the coupling constants Jo,,( w, io0) are non-degenerate, J,,,,( w, ico) for 
al  # 0 are n-fold degenerate and there are at most 2n - 1 different coupling constants. 
For n = 2 with p as in (24) it becomes the X X Z  model with 

Jl = JZ = 1 J3 = COS rw. (33) 

Alternatively, if we choose p satifying p(z, w, icc) = AT-’ sin r w ,  then from (5) we 
have the non-vanishing Boltzmann weights: 

S;:(Z, w, ico) = ~ n r - l s i n  r ( z +  w)  

$f(z, w, icc) = ~ n r - l s i n  r z  exp(-irwAl-k) 

Sf;(z, w, ic0) = A m - ’  sin r w  exp(irzA,_,). 

(34) 

(35 )  

(36) 

We see that for w = i r - ly ,  z = i r - l p ;  A, y, p > 0, p = A T - ’  sinh y, the weights are 
positive. However, we shall find in the next section that the corresponding Hamiltonian 
is non-Hermitian in general. From (34)-(36) we get the coupling constants in (27): 

Jkkkk( w, ice) = A cos r w  (37) 

Jbjl(w, ico) = A exp(-irwAj-,) 

Jlbj(w, icc) = AiAj-, sin r w  

j # l  

j # 1. 

Hence (27) becomes 

(38)  

(39) 

+ i  sin TW C A,-lEj,““Ejj”’+”+ 
j # l  

Letting w = i y /  T we have 
h, I 
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4. On the hermiticity of the Hamiltonian 

The hermiticity of the Hamiltonian (20) or (27) Ht = H is equivalent to the conditions 
(let ho = 0 for simplicity below) 

J,(W, T)*=J-,(W, 7 )  (42) 
or 

Jikjl(w, T)* = Jkilj(w, 7) .  

For (40) we see that (43) leads to 
cos TW* = cos T W  

sin TW* = -sin TW 

(43) 

exp(iTw*A,-,) = exp(i.rrwAj-l). 

For n > 2 this set of conditions only has the solution w = integer. Hence we know that 
the Hamiltonians (40) and (20) are not Hermitian for n > 2 with w # integer. For w = k 
(an integer), choosing p satifying ~'(0) =o, p(0)8;(0,T)/8,(w, T)I,,k = ( - I ) ~ A ,  A* = A ,  
we get from (20)-(23) the Hermitian Hamiltonian: 

or 
N n--l 

It may be referred to as a n-state model [16]. In particular, if k = n, it is a generalisation 
of the X X X  model and is investigated by Sutherland [ 171 and Kulish [ 181. 

5. Discussions 

We have deduced the t~ chain Hamiltonian, being the logarithmic derivative of the 
transfer matrix for Belavin's Z, x Z, model. For n = 2 it is exactly the X Y Z  model, 
or the X X Z  model for T + im, or the X X X  model for w = n. 

For n > 2, it can be regarded as a multicomponent generalisation of the above 
models. However the Hamiltonian for wZinteger is not Hermitian. This may be a 
consequence of the non-positivity of the Boltzmann weights shown in [12]. A remark- 
able fact is that there is a domain of parameters in which the Boltzmann weights 
(34)-(36) are positive, but the corresponding Hamiltonian is not Hermitian. Positive 
Boltzmann weights mean that it is a physical system. Though a non-Hermitian Hamil- 
tonian may also be a evolution operator of a physical system (such as a non-stable 
state, excited atoms or a system described by an optical potential, etc), the physical 
meaning and the characteristic of the Hamiltonian (41) would still be interesting and 
could be investigated by means of the solution of the transfer matrix [13,14]. 

Another remarkable character is that the gauge transformations of the monodromy 
matrix may change the coupling constants, but in reality do not change the whole 
Hamiltonian. To see this, we write the transformed operators by adding a wave. Under 
the local transformation G'"'), the Boltzmann weights become 
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where G(N+l) = G('), Gjk(0) = Sjk, and the G are invertible but may be non-unitary. 
This transformation ensures the transfer matrix to be invariant, i.e. ?= T.  From (28) 
and ( 5 )  we get j = J + A J  with 

Since f = T, or more directly (a/az)P(m)-lP(m) = 0, we have the expected result 

Now let us consider the relation of the Hamiltonian to other two Z, x i ! "  models 
given in [7,15]. For [15] the Hamiltonian can be written as 

In [7] the Hamiltonian is 

Hd = - ( r m = l  r # s  r # s  

(51) 

N 
E!,")Ej?+"+cosh y e  E',"'E',,"+"+sinh y Ar-sE$,")Ei.,"+l) 

The gauge transformation G!,") = S,, exp(2sOln) changes the coupling constant 
sinh yAr-, in (51) to sinh y sgn(r-s), and the difference is 

AH =sinh y e  [Ar--S-sgn(r-s)]E' ,?'Ej ,"+''  
m r # s  

N 2 
=--sinh (rm-rm+l)Er,r,Er,r, ...EINrN=O. (52) n m = l  r l r  2. . . rN 

Thus, if we take cp = 1, G,, = 1 or GPO = exp(yh,-,) in (50), then the Hamiltonian Hs 
(50) identifies H d  (51) or H (41). We also see that H (41) is different from H d  only 
in the coupling constants of the ErSE,, terms. However, this difference is very crucial 
so that the presence of both the coupling constants eyA and A sinh y in (41) leads to 
its non-Hermiticity for the n > 2, i y Z integer case. Because H (41) in this case is not 
a normal matrix, it cannot therefore turn into a Hermitian one by a unitary transforma- 
tion. Moreover, we have known that H (41) has some imaginary eigenvalues in this 
case. Hence it cannot turn into a Hermitian one by a similarity transformation. 
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